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Abstract. We study the scale at which one can generate the lepton asymmetry of the universe which
could then get converted to a baryon asymmetry during the electroweak phase transition. We consider the
possibility that the Yukawa couplings could be arbitrarily small but sufficiently large to generate enough
lepton asymmetry. This forbids the possibility of the (B − L) breaking scale to be less than 10 TeV.

1 Introduction

In most grand unified theories (GUTs) the baryon asym-
metry of the universe is generated during the GUT phase
transition [1–3]. In these models the generated asymme-
try also implies an equal amount of lepton asymmetry and
hence there is no net (B − L) asymmetry. On the other
hand if the electroweak phase transition is a second order
phase transition, then any primordial (B +L) asymmetry
generated during the GUT phase transition will be washed
out [4] .

This situation can be saved in models where (B−L) is
broken at some intermediate scales. In this case a (B −L)
asymmetry can be generated through higgs decay or heavy
Majorana neutrino decay if there is appropriate CP vi-
olation. The out-of-equilibrium condition then imposes a
lower bound on this symmetry breaking scale to be around
107 GeV [2]. This bound is dependent on the fact that the
Yukawa couplings are larger than 10−5. Although estheti-
cally this number sounds reasonable, nothing tells us def-
initely that the Yukawa couplings cannot be smaller than
this. For example, if the Yukawa couplings relating the
left handed leptons to the first generation right handed
heavy neutrinos are of the order of 10−7, then the out-of-
equilibrium condition can be satisfied for even a TeV scale
for left-right symmetry breaking. But the same Yukawa
couplings enter in the expression for the generated (B−L)
asymmetry, which may then be very small.

In this article we study systematically the Boltzmann
equations for the generation of the lepton asymmetry, and
hence (B −L) asymmetry, to find the lowest possible left-
right symmetry breaking scale which satisfies the out-of-
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equilibrium condition and which generates enough baryon
asymmetry after the electroweak phase transition. This
scale, which is the only one in our model, is the the scale of
the (B – L) symmetry breaking, the scale of the breaking of
the SU(2)R symmetry breaking and is also the mass scale
for the gauge bosons corresponding to these symmetries.
This means that the left–right symmetric model of lepto-
genesis can be falsified experimently if the right handed
charged gauge bosons corresponding to the SU(2)R sym-
metry are seen in the next generation experiments below
the scale at which leptogenesis is possible. One would then
have to look for some new scenario for generating a baryon
asymmetry of the universe.

In the next section we briefly review the leptogenesis
scenario, where one generates a lepton asymmetry when
the right handed Majorana neutrinos decay. This then gets
converted to a baryon asymmetry during the electroweak
phase transition. Subsequently, we discuss the Boltzmann
equations and the possible solutions for a low energy left-
right symmetry breaking.

2 Model for leptogenesis

It was first proposed by Fukugita and Yanagida [5] that
in extensions of the standard model, which include singlet
heavy right handed neutrinos, it is possible to generate
a lepton asymmetry at some intermediate scale (∼ 1010

GeV), which can then get converted to a baryon asymme-
try during the electroweak phase transition. The out-of-
equilibrium condition is satisfied with small Yukawa cou-
plings. In this scenario the heavy right handed neutrinos
decay to light left handed neutrinos in out-of-equilibrium.
The amount of asymmetry thus generated depends on the
amount of CP violation [5,6].

In the following we shall consider a left-right symmet-
ric extension [7] of the standard model, which incorpo-
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rates the right handed neutrinos and can explain the origin
of parity violation in the standard model. In this exten-
sion there are new sources of CP violation which have a
phenomenologically rich structure [8,9]. We consider the
symmetry breaking chain, SU(3)c × SU(2)L × SU(2)R ×
U(1)(B−L) [≡ GLR] MR

−→ SU(3)c×SU(2)L×U(1)Y [≡ Gstd]
MW

−→ SU(3)c × U(1)em. The symmetry breaking GLR →
Gstd takes place when the right handed triplet higgs field
∆R ≡ (1,1,3,-2) acquires a vacuum expectation value
(vev). In this model (B − L) is a local symmetry. The
breaking of the group GLR also implies spontaneous
breaking of (B−L). Left-right parity implies the existence
of another higgs field ∆L which transforms as (1,3,1,-2)
under GLR. A higgs bi-doublet field φ (1,2,2,0) breaks the
electroweak symmetry and gives masses to the fermions.

The fermion content of the model is, qiL ≡ [3, 2, 1, 1/3],
qiR ≡ [3, 1, 2, 1/3], `iL ≡ [1, 2, 1, 1] and `R ≡ [1, 1, 2, 1],
where i = 1, 2, 3 corresponds to three generations. The
right handed neutrinos (Ni ≡ νiR) are contained in `iR

and we do not have to include them by hand. The Yukawa
couplings in the leptonic sector are given by,

LY uk = fij`iL`jRφ + fLij`iL
c`jL∆†

L

+fRij`iR
c`jR∆†

R. (1)

The scalar potential has many more terms compared
to the standard model. We write down only those terms
which contribute to the generation of the lepton asymme-
try of the universe,

Lint = g(∆†
L∆Rφφ + ∆L∆†

Rφφ) + h.c.. (2)

The vev s of these fields are not independent. We consider
the minimum of the complete potential which satisfies
vL � vR and vL ≈ v2/vR, where vL,R and v are the vev s
of the fields ∆L,R and φ respectively. We also assume that
the left-right parity (D− parity) is not broken, and hence
the masses of the fields ∆L and ∆R remain the same even
after the breaking of GLR, i.e., m∆L

= m∆R
= m∆ ≈ vR.

At this scale vR, the (B−L) local symmetry is also broken
by two units, which gives rise to Majorana masses of the
neutrinos and neutron-antineutron oscillations.

The ∆L,R can now decay into two leptons, while ∆†
L,R

decay into two antileptons:

∆L,R → `L,R + `L,R. (3)

∆†
L,R → `c

L,R + `c
L,R. (4)

These interactions, along with the scalar interactions

∆L,R → φ + φ,

→ φ† + φ†,

give rise to lepton number violation. The interference of
the tree level diagram and the one loop diagram of Fig. 1
can then give rise to a lepton asymmetry in the decay
modes of (3) and (4) for the left-handed triplets ∆L given
by,

ε∆ ≈ 1
8π|fLij |2 Im[g∗f∗

Lijfikfjk]F
(

g∗

fRkk

)
, (5)
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Fig. 1. Tree and one loop diagrams of lepton number violating
triplet higgs ∆L decay
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Fig. 2. Tree and vertex correction type one loop diagrams
contributing to the generation of lepton asymmetry

where F (q) = ln(1 + 1/q2). The quantity [g∗f∗
Lijfikfjk]

contains a CP violating phase and so can be complex.
The fields ∆R cannot generate any asymmetry because

the ∆R can decay through lepton–number violating de-
cay mode of two higgs only after the ∆L has acquired a
vev. But ∆L acquires a vev at a scale less than a few
eV due to a seesaw suppression and gives a coupling for
the ∆R to decay which is highly suppressed. Although the
left handed higgs triplets ∆L can generate lepton asym-
metry through their lepton number violating interactions,
the scattering process ∆L + ∆L → WL + WL should make
their number density the same as the equilibrium density.
To avoid this possibility we find there is a strong constraint
on the mass of the triplet higgs, namely, M∆ > 1014 GeV
[10]. At temperatures below this scale the density of the
∆L always is the equilibrium density and hence cannot
generate a lepton asymmetry of the universe. Fortunately
the ∆L are heavier than the right handed neutrinos. Thus
for the generation of lepton asymmetry at low energy the
main contribution comes from the decays of heavy right
handed neutrinos.

The vev of ∆R spontaneously gives a Majorana mass
to the right handed neutrinos. This in turn allows the
decay of νR into a lepton and an antilepton,

Ni → `jL + φ̄, (6)
→ `jL

c + φ. (7)

In the case of decays of the right-handed neutrinos there
are two types of loop diagrams which can interfere with
the tree level decays of (6) and (7) which are shown in
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Fig. 3. Tree and self energy correction type one loop diagrams
contributing to the generation of lepton asymmetry

Fig. 2. The interference of the tree level diagram and the
one loop diagrams of Fig. 2 generates a lepton asymmetry
given by,

εν ≈ 1
4π|fik|2 Im[fikfilf

∗
jkf∗

jl]
fRii

fRkk
. (8)

In addition to these one loop vertex type corrections,
there are self energy type corrections which also contribute
to the lepton asymmetry of the universe (Fig. 3). In the
limit of large mass–squared difference between the two
generations of heavy neutrinos, various aspects of this in-
terference of the tree and the one-loop diagrams (Fig. 3)
have been discussed and calculated in the literature [11–
16].

There were attempts to use the oscillation phenome-
non to generate a baryon asymmetry [11]. For Majorana
neutrinos the self-energy diagrams were considered in ref
[12], but it was not realized that this corresponds to CP
violation of the indirect type [13]. This realization created
renewed interest in the field and an understanding of the
phenomenon became important. It has now been clarified
[14] that although the unitarity condition seems to imply
that it is not possible to generate a lepton asymmetry
through the oscillation process, if the system departs from
equilibrium and the real intermediate states are properly
taken into account, then CP violation can occur.

It was shown in [13] that in the indirect CP violation
there is a resonance phenomenon when the two heavy neu-
trinos are almost degenerate. This has been confirmed by
other calculations [16]. However, the different calculations
give somewhat different results. Here we will take a form
which gives the largest effect [13], one which will give the
smallest lower bound on the left-right symmetry breaking
scale.

In the case of a small mass difference, but ignoring
the width of the Majoranas, which is, of course, necessary
when the mass difference becomes very small, δ is given
by [13]:

δ = 2π gabC M1M2

M2
2 − M2

1
(9)

where

C = − 1
π

Im[
∑
α

(f∗
α1fα2)

∑
β

f∗
β1fβ2)]

×
(

1∑
α |fα1|2 +

1∑
α |fα2|2

)
(10)

As mentioned above, this contribution becomes significant
when the two mass eigenvalues are close to each other. For

very large values of the mass difference the two contribu-
tions εν and δ are of the same order of magnitude.

We now have to consider only the ∆L, ∆R and N1,2
decay processes. We assume N1 to be the lightest of the
right handed neutrinos. If the masses of N1 and N2 are
almost degenerate, their decay widths can become larger
than the mass difference. In this case both the neutrino
decays will contribute to the lepton asymmetry of the uni-
verse. The decay widths for ∆L,R and N1 are,

Γ∆L,R
=

|f[L,R]ij |2
16π

M∆ and

ΓNi
=

|f1j |2
16π

MN , (11)

where MN is the mass of N1. Since we assumed MN <
M∆, at low energy the ∆L decay will erase all lepton
asymmetry and then the N1 decay will generate the re-
quired asymmetry. For this reason while working the de-
tails of the Boltzmann equation we take the effect of only
ε = εν + δ. We shall now proceed to solve the Boltzmann
equations including all these contributions and the scat-
tering processes.

3 Solutions of the Boltzmann equations

The evolution of lepton and neutrino densities is governed
by the Boltzmann equations. We start by deriving the
Boltzmann equation for the neutrino number density ni.
The equation governing the evolution of ni is:[2,10]

ṅi + 3Hni =
∫

dΠidΠ1dΠ2 (2π)4δ(4)(pi − p1 − p2)

×
{

−fi(pi)|M0|2

+
1
2
(1 + ε)|M0|2fl(p1)fΦc(p2)

+
1
2
(1 − ε)|M0|2fl̄(p1)fΦ(p2)

}

=
∫

dΠidΠ1dΠ2 (2π)4δ(4)(pi − p1 − p2)

{−fi(pi) + feq
i (pi)} |M0|2 + O(ε, µ/T )

= −Γi(ni − neq
i ), (12)

where neq
i is the equilibrium number density of the Ni,

and Γi is the thermally averaged decay width of Ni. The
term on the left-hand side is the time derivative of ni,
plus a term which accounts for the dilution effect of the
expansion of the universe. The integration is over phase
space dΠ and the phase space densities f , are given by
the Maxwell-Boltzmann statistics:

fi(E) = exp[− (E − µi)
T

], fl(E) = exp[− (E − µ)
T

],

fΦ(E) = exp[− (E + µ)
T

], (13)
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where µ is the chemical potential. The matrix element M0
is defined by:

|M(N → l̄Φ)|2 = |M(lΦc → N)|2 =
1
2
(1 + ε)|M0|2,

|M(N → lΦc)|2 = |M(l̄Φ → N)|2 =
1
2
(1 − ε)|M0|2, (14)

where ε is a measure of CP -violation. The interference of
the tree and the one loop graphs give the CP−violating
contribution to the Boltzmann equation. This is what al-
lows the lepton asymmetry to grow:

[|M(N → lΦc)|2 − |M(N → l̄Φ)|2] = ε|M0|2.
It is more convenient to work with the variables:

Yi = ni/s, x = Mi/T = [2H(x = 1)t]
1
2 , (15)

where Mi is the mass of Ni; s = g∗nγ is the entropy den-
sity of the universe; g∗ is the total spin degrees of freedom;
nγ is the equilibrium photon density of the universe and Yi

the number of neutrinos per co-moving volume element.
H = 1.7

√
g∗T 2/MP is the Hubble constant, MP is the

Planck mass, taken to be 1018 GeV.
Thus:

dYi

dx
= −Kγx(Yi − Y eq

i ), (16)

where we have used:

nγ = s/g∗,
ds

dt
= −3s

Ṙ

R
= −3sH, (17)

and:

K =
Γi(x = 1)
H(x = 1)

, γ =
Γi(x)

Γi(x = 1)
, (18)

with:

Y eq
i = neq

i /s =
{

g−1
∗ x � 1

g−1
∗

√
π/2x3/2 exp(−x) x � 1

.

In solving the Boltzmann equations, we make the further
change of variables, X = g∗Y , thus:

dXi

dx
= −Kγx(Xi − Xeq

i ). (19)

This is the Boltzmann equation for the evolution of neu-
trino number density, with the initial condition Xi(0) = 1.

We now derive the Boltzmann equation for L = 1
2 (l−l̄),

where we have to take into account the processes l+Φc ↔
l̄ + Φ mediated by a right-handed Majorana neutrino, as
well as the processes:

l̄ ↔ NΦc. (20)

The Boltzmann equation for the number density of the
light left-handed leptons is:

ṅl + 3Hnl =
∫

dΠN dΠ1 dΠ2 (2π)4 δ(4)(pN − p1 − p2)

× [−(1 − ε)fl(p1)fΦc(p2)
+(1 + ε)fN (pN )] |M0|2

+2
∫

dΠ1 dΠ2 dΠ3 dΠ4 (2π)4

δ(4)(p1 + p2 − p3 − p4)
× [−fl(p1)fΦc(p2)|M′(lΦc → l̄Φ)|2
+fl̄(p3)fΦ(p4)|M′(l̄Φ → lΦc)|2]
+O(εnl + n2

l ). (21)

The origin of the various terms is described below.
The interaction term comes from CP -violation in the

decay and inverse decay of the heavy Majorana neutri-
nos and is proportional to ε, the CP -violating phase and
the squares of the matrix element |M0|. The second term
describes the 2 ↔ 2 lepton number violating scattering
process. Since the decays of the real intermediate states
and their inverse decays have already been included in
the CP violating contribution, they have been subtracted
from the scattering term mentioned above.

The corresponding equation for l̄ is obtained as usual,
by interchanging l ↔ l̄, ε ↔ −ε, etc. To obtain the Boltz-
mann equation for the evolution of nL = 1

2 (nl − nl̄) we
subtract the equation for nl̄ from that for nl and multiply
by a factor of 1/2:

ṅL + 3HnL = εΓi(ni − neq
i ) − nL(neq

i /nγ)Γi

−2nLnγ < σ|v| >, (22)

Γj =
h2

αj

16π
. (23)

where |M′(lΦc → l̄Φ)|2 and |M′(l̄Φ → lΦc)|2 are the
squares of the matrix elements for 2 ↔ 2 L-nonconserving
scatterings with the part due to real, intermediate-state
N ’s removed and Γj is the decay rate of the right handed
neutrino Nj . Here the quantity:

< σ|v| > =
∫

dΠ1dΠ2dΠ3dΠ4(2π)4

δ(4)(p1 + p2 − p3 − p4)fl(p1)fl(p2)
|M′(lΦc → l̄Φ)|2/n2

γ , (24)

is the velocity-averaged 2 ↔ 2 L-violating cross-section.
The presence of the term −εΓin

eq
i is due to the CP -

violating part of |M′(lΦc → l̄Φ)|2 − |M′(l̄Φ → lΦc)|2.
In parallel to the calculation for the ni, we obtain:

dYL

dx
= εKγx(Yi−Y eq)−g∗Y eqYLKγx− 2YLΓsx

H(x = 1)
, (25)

where Γs = nγ < σ|v| >, with the initial condition YL(0)
= 0.

To solve the set of coupled differential equations, we
take for Γi, γ and Γs:

Γi =
f2

16π
Mi

{
x x � 1
1 x � 1 , (26)
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Fig. 4. Lepton asymmetry YL grows steadily to a constant
asymptotic value ε for K < 1

γ =
{

x x � 1
1 x � 1 , (27)

and:

Γs =
3f4

4π

Mi

x

{
1 x � 1
2
3

1
x2 x � 1 . (28)

Note that for small x the scattering term is proportional to
1/x whereas the decay rate behaves like x. The functions
γ, Γi, and Γs must be specified in the region x ≈ 1, in
order to find a solution for the differential equations. We
take:

γ = 1 − exp(−x), (29)

Γi =
Mif

2

16π
(1 − exp(−x)) , (30)

and:

Γs =
3f4Mi

4πx

(
1 − exp[−2/(3x2)]

)
, (31)

which are a good approximation to the functions (26),
(27) and (28) above, in the regions x � 1 and x � 1. The
numerical solutions to the Boltzmann equations are then
obtained for different values of f , K and ε.

We summarize our observations below and in Figs. 4–7.
We want to find the lowest right–handed symmetry break-
ing scale which can give leptogenesis. If a gauge boson
corresponding to the SU(2)R symmetry is seen at ener-
gies lower than this lowest allowed scale then the possi-
bility of leptogenesis is ruled out. One would have to look
alternative ways to generate a baryon asymmetry of the
universe. From our analysis of the Boltzmann equation we
can only get a bound on the lightest right handed neutrino
(N1). However, the masses of the right handed neutrinos
are related to the left-right symmetry breaking scale by,

M1 = fR11 < ∆R >= fR11MR.

Considering the fact that the Yukawa couplings are
smaller than 1, we can translate a bound on M1 to a bound
on MR. In other words, when we say, MR is greater than

0.0 10.0 20.0
x −−−>

0.00

0.20

0.40

Y
  −

−
−

>
L

K = 1

Fig. 5. For K = 1, lepton asymmetry starts depleting before
reaching a constant value. The asymptotic constant value is
thus much less than ε

0.0 10.0 20.0
x −−−>

0.00

0.10

0.20

Y
  −

−
−

>
L

K = 5

Fig. 6. For large K > 1 the behaviour is similar to K = 1.
For K = 5 the asymptotic value is further depleted

some value, it actually means that M1 is greater than that
value and MR is much heavier.

To demonstrate our results we presented only a few
representative graphs, with the coupling constants being
taken to be of the order of 1. However, in our analysis we
have considered much smaller coupling constants also. The
figures depend on the value of K and the relative magni-
tudes of the scattering and the decay rates for a specific
choice of the coupling constant. As we change the coupling
constants, the values at which the scattering process be-
comes dominant compared to the CP violating decay rates
will change, but the nature of the graphs will remain the
same.

For K � 1, the amount of lepton asymmetry grows cu-
bically to a constant asymptotic value which we call Y asym

L
(K � 1) as shown in Fig. 4. In all these figures we have
taken the values of the couplings to be of the order of
1. The nature of the curve is independent of the choice
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Fig. 7. The asymptotic value of the lepton asymmetry for
different values of K in log10 − log10 graph. For K = 1000 the
lepton asymmetry drops to 8 × 10−6

of the Yukawa couplings. This asymptotic value is given
by, YL(asym) = (ε + δ)/g∗. This is the case when the de-
cay rate of N1 is less than the expansion rate of the uni-
verse. In this case the scattering rates are also less than
the expansion rate of the universe. If the mass difference
between N1 and N2 is of the same order of magnitude to
their masses, the contributions of ε and δ become com-
parable. This case has been discussed extensively in the
literature and the constraint on the scale of (B−L) break-
ing obtained from this condition is MR > 107 GeV with
the Yukawa couplings to be of the order of 10−5. Some-
what smaller values of the Yukawa couplings can reduce
the scale of (B − L) breaking to a lower value. However
the amount of lepton asymmetry will be inadequate unless
there is a large hierarchy among the Yukawa couplings of
different generations.

When the mass difference |M1 − M2| ∼ 10−3M1,2, δ
can be three to four orders of magnitude larger than ε.
In this case we can consider |f | ∼ 10−7 and still get ade-
quate amount of lepton asymmetry. This will then allow us
somewhat smaller right handed symmetry breaking scale
MR > 105 GeV.

When K is of the order of unity or more, the lepton
asymmetry vanishes before T = M1. From T = M1 on-
wards the lepton asymmetry starts increasing from its ini-
tial value of YL = 0, but as it approaches the asymptotic
value of Y asym

L (K � 1) the scattering processes becomes
important and start depleting it exponentially (as shown
in Figs. 5 and 6). Unlike the common folklore that when
the system is in equilibrium the asymmetry falls exponen-
tially fast, here the scattering processes become unimpor-
tant and the lepton asymmetry reaches its new asymp-
totic value, which is less than (ε + δ)/g∗). For K = 1 the
suppression factor is about 1/5 and for K = 5 it is .02.
Figure 7 shows the fall of this asymptotic values of the
lepton asymmetry for different values of K. For K = 1000
the suppression factor is about 8 × 10−6. In grand unified

theories where the heavy gauge bosons decay generates an
(B +L) asymmetry it was shown [2] that this suppression
factor is ≈ [K(lnK)0.6]−1. But in the case of leptogenesis,
as Fig. 7 shows, this suppression is much faster than linear.
For large mass difference |M1 − M2|, YL is approximately
proportional to f2 when all the f ’s are of the similar or-
der of magnitude and K ∼ 10−3f2MP /M1. Since K and
YL both are proportional to |f |2, we cannot improve the
bound on the right handed symmetry breaking scale with
large K. However, since the suppression for large K is al-
most quadratic we can at most lower the scale of left-right
symmetry breaking by one order of magnitude to about
104 GeV.

For very large K, if |f |4 ≥ 10−15 M1
(100 GeV) , the scat-

tering processes become larger than the expansion rate of
the universe. In this case the lepton asymmetry decreases
exponentially and never reaches any asymptotic value. In
this region the actual equilibrium condition is satisfied.

4 Summary and conclusion

We have studied the possible scale of left-right symmetry
breaking which can generate enough lepton asymmetry of
the universe. For simplicity we assumed that the order of
magnitude of the Yukawa couplings of the heavy neutri-
nos are similar. Since there is the freedom to choose the
Yukawa couplings by several orders of magnitude, one re-
sorts to naturalness to constraint the scale of leptogenesis.
In this article we show that even including the resonance
condition, which can enhance the amount of CP violation
by few orders of magnitude for almost degenerate heavy
neutrinos, the lowest scale for leptogenesis can not be less
than 104 GeV. We have also considered the situation when
the interaction rates are slightly larger than the expansion
rate of the universe, when it is still possible to generate a
lepton asymmetry of the universe. However, even in this
case the lower limit on the scale of left-right symmetry
breaking remains the same. As a result, if a right handed
charged gauge boson is observed in one of the next gen-
eration accelerators we have to resort to new scenarios to
generate a baryon asymmetry of the universe.
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